Unfolding the Mystery of Transformer-like Proteins
Lauren Porter’s Research on Fold-switching Proteins
May 06, 2022
From the NIH Catalyst by Natalie Hagan, NCATS
For decades it was thought that when proteins fold, they assume only one stable structure that performs a specific function. For example, the unique structure of the protein hemoglobin allows it to transport oxygen from the lungs to the tissues. This one-sequence-one-fold paradigm is attributed to NIH’s Christian Anfinsen, who won the 1972 Nobel Prize in Chemistry. His work established a connection between the amino acid sequence that makes up a protein and its three-dimensional shape, or conformation, that dictates the protein’s biological function.
Stadtman Tenure-Track Investigator Lauren Porter’s research on fold-switching proteins challenges the ubiquity of this one-sequence-one-structure paradigm. “Fold-switching proteins are like Transformers, like Optimus Prime,” said Porter, referring to the hero of the science fiction franchise of shapeshifting humanlike robots. “Sometimes he’s a robot, and sometimes he turns into a car. He uses both of his structures and both of his functions to fight crime.” Similarly, the proteins she studies have multiple stable structures and functions.
Read the Full Article
From the NIH Catalyst by Natalie Hagan, NCATS
For decades it was thought that when proteins fold, they assume only one stable structure that performs a specific function. For example, the unique structure of the protein hemoglobin allows it to transport oxygen from the lungs to the tissues. This one-sequence-one-fold paradigm is attributed to NIH’s Christian Anfinsen, who won the 1972 Nobel Prize in Chemistry. His work established a connection between the amino acid sequence that makes up a protein and its three-dimensional shape, or conformation, that dictates the protein’s biological function.
Stadtman Tenure-Track Investigator Lauren Porter’s research on fold-switching proteins challenges the ubiquity of this one-sequence-one-structure paradigm. “Fold-switching proteins are like Transformers, like Optimus Prime,” said Porter, referring to the hero of the science fiction franchise of shapeshifting humanlike robots. “Sometimes he’s a robot, and sometimes he turns into a car. He uses both of his structures and both of his functions to fight crime.” Similarly, the proteins she studies have multiple stable structures and functions.
Read the Full Article